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Microwave-assisted N-arylation of a sulfoximine with aryl chlorides
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Abstract—N-Arylsulfoximines and related species could be prepared in good to excellent yield by the palladium-catalyzed coupling
of 1 with aryl chlorides under the influence of microwave irradiation.
� 2004 Elsevier Ltd. All rights reserved.
As part of our continuing research of the synthesis and
chemistry of enantiomerically pure benzothiazines, we
maintain an active interest in the N-arylation of sul-
foximines. This process, first reported by Bolm and
Hildebrand,1 was key to our discovery of a facile syn-
thesis of enantiomerically pure benzothiazines.2 The
Bolm group has made use of this reaction in the prep-
aration of a variety of chiral ligands and unique cyclic
sulfoximines.3 We have also developed a chiral ligand
based on this chemistry and have recently introduced
the stereoselective, intramolecular addition of sulfoxi-
mine carbanions to a,b-unsaturated esters as a means of
preparing chiral, enantiomerically pure benzothi-
azines.4;5 This methodology has been extended to the
formal total syntheses of (+)-curcuphenol and (+)-cur-
cumene.6

Typically, the Bolm methodology has been used to
couple aryl bromides to N–H sulfoximines. Aryl iodides
and triflates have also been shown to be suitable cou-
pling partners.7 To the best of our knowledge, the
coupling of aryl chlorides to N–H sulfoximines is
unknown.8

We were curious as to whether the Bolm reaction con-
ditions could be applied to aryl chlorides. Our first at-
tempts to couple aryl chlorides with sulfoximine resulted
in poor yields of products. For example, the reaction of
2-chlorobenzaldehyde with 4 equiv of 1 in the presence
of 3 equiv of cesium carbonate and catalytic amounts of
Pd(OAc)2 in refluxing toluene for 44 h afforded a com-
plex mixture in which only a small amount of benzo-
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thiazine 3 was detected. Switching to ligand 49 and using
either sodium tert-butoxide or K3PO4 as base gave less
than 10% yields of 3, in addition to small amounts of a
condensation product (Scheme 1).

Rather than perform a catalyst optimization study, we
wondered whether the intense and rapid heating asso-
ciated with microwave irradiation might make it possi-
ble to use aryl chlorides as partners in the arylation
reaction of 1.10 This report is a summary of our studies.

Our results are summarized in Table 1. We used four
different procedures in an effort to get a preliminary
indication as to how certain changes in reaction condi-
tions would affect the outcome of the N-arylation pro-
cess.11 Procedure A involved irradiating a solution of
1.2 equiv 1 and an aryl chloride in the presence of 5%
Pd(OAc)2, 7.5% rac-BINAP, and 1.4 equiv of Cs2CO3.
These are essentially Bolm’s conditions for the thermal
coupling of aryl bromides. In procedure B, 5 equiv of
aryl chloride were used and the reaction was run
through two 1.5 h cycles, new catalyst and ligand being
added prior to the start of the second cycle. With pro-
cedure C aryl chlorides were used as the solvent and two
Scheme 1.
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Table 1. Microwave-assisted reaction of 1 with aryl chloride under palladium catalysis

Entry Aryl chloride Method Product Yield (%)

1 A 10

2 5 Aa 6 33

3 5 C 6 49

4 C 47

5 A 55

6 9 B 10 87

7 B 31

8 B 74

9 B 90

10 B 94

11 B 93

12 B 74

13 B 80

14 B 94

15 B 72

16 B 46
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Scheme 2.

Table 1 (continued)

Entry Aryl chloride Method Product Yield (%)

17 29 D 30 65

18 B 43

aTen equivalents of aryl chloride were used.

M. Harmata et al. / Tetrahedron Letters 45 (2004) 5233–5236 5235
cycles of irradiation were used, as in procedure B. Pro-
cedure D was similar to procedure B, but with 15% t-
Bu3P replacing BINAP.

As successful as Bolm reagent blend is for aryl bromides
under thermal conditions, it appeared in certain experi-
ments that aryl chloride reduction was taking place or
that catalyst was simply losing activity over time. For
example, when chlorobenzene was treated with 1 in the
presence of palladium acetate and rac-BINAP and the
mixture irradiated for 1.5 h at 135 �C (200W), the sul-
foximine 6 was produced in only 10% yield (entry 1).
Using 10 equiv of chlorobenzene increased the yield to
33% (entry 2) and using the reactant as solvent afforded
a 49% yield of 6 (entry 3). A similar result was obtained
when 2-chlorotoluene was used as solvent (entry 4).
These are not bad results, given that no attempt was
made to improve the catalyst system.

However, we were more interested in aryl chlorides
bearing electron-withdrawing groups, not only because
some of them could be converted to benzothiazines, but
also because we anticipated that they would function
better in the coupling reaction. This turned out to be the
case. For example, when 2-chlorobenzaldehyde 9 was
coupled to 1, benzothiazine 10 was produced in 55–87%
yield, depending on the procedure used (entries 5 and 6).
Even 2-chloroacetophenone coupled with 1 to give 12,
albeit in only 31% yield (entry 7). Interestingly, while 13
produced the expected benzothiazine 14 in 74% yield
(entry 8), its nitrated analogue 15 gave only the corre-
sponding N-arylsulfoximine 19 in 90% yield (entry 9). It
is possible that the nitro group increases the stability of
the sulfoximine carbanion derived from 19 sufficiently
well that it is simply not reactive enough to engage in
addition to the carbonyl group.

Various other chloroarenes were used as coupling
partners with 1 and in general, the corresponding sul-
foximines were produced in excellent yield (entries 10–
15). One notable exception was the sulfoximine 30 de-
rived from ester 29, which was formed in only 46% yield.
This yield could be improved by irradiating 1 with
5 equiv of the aryl chloride in the presence of Pd(OAc)2
and t-Bu3P for the usual time (entry 17).

We were curious to see if the yield of 30 might be im-
proved by using a different starting material. Thus, we
prepared triflate 31 and treated it with 1.2 equiv of 1
under reaction conditions corresponding to Procedure
A. We isolated 30 in 94% yield (Scheme 2). When
5 equiv of sulfoximine were used, the yield improved to
99%.
In summary, we have developed a simple procedure for
the rapid N-arylation of sulfoximine 1 with aryl chlo-
rides. Appropriately functionalized systems gave rise to
benzothiazines directly in a one pot process. One aryl
triflate was shown to react very well to form an N-aryl
sulfoximine. Optimization of catalyst systems or devel-
opment of conditions that avoid any catalysts12 are
under study. Further results will be reported in due
course.13;14
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